Isoprenoids and Fatty Acids Derivatives from the Chloroform Fraction of the Antimycobacterial Methanol Extract Ximeniaamericana Lam. (Olacaceae) Stem Bark
DOI:
https://doi.org/10.18034/mjmbr.v6i2.480Keywords:
Ximeniaamericana, isorenoids, fatty acids, tuberculosis, drug discoveryAbstract
This study investigated the triterpenoids and fatty acid derivatives, and the in vitro growth inhibitory effect against clinical strains of Mycobacteria tuberculosis of the stem bark of Ximenia Americanaa plant widely used in ethno-medicine for the treatment of bacterial and skin infections, poison, post-partum hemorrhage, anaemia, and dysentery. The macerated methanol extract (XAM) of the stem bark was evaluated for anti-tuberculosis activity using the Lowensten Jensen method against de-contaminated clinical strains of Mycobacterium tuberculosis. The XAM was fractionated by open column chromatography on a normal phase silica gel column with a 25 % stepwise gradient of chloroform-methanol as mobile phase. The constituents of the non-polar column fractions eluted with 100% chloroform were characterized using Gas Chromatography-Mass spectroscopic (GC-MS) techniques and by comparison with reference NIST library compound. The XAM (5 mg/mL) inhibited the growth of the Mycobacterium tuberculosis. GC-MS analysis of the non-polar column fractions afforded Two lupane-type triterpenoids: Lup-20-(29)-en-3-one (15) and lupeol (16), three phytosteroids: campesterol (11), stigmasterol (12) and gamma-sitosterol (14), one fridelane-type triterpenoid: Friedelan-3-one (8), one oleanane-type triterpenoid: 12-oleanen-3-one (13), and the fatty acids: Palmitic acid methyl ester (1), Palmitic acid (2), 11-octadecenoic acid methyl ester (3), Octadecanoic acid methyl ester (4), Cis-13-Octadecenoic acid (5), 10,13-octadecadiynoic acid methyl ester (6), Docosanoic acid (7), Tetracosanoic acid (9), and Hexacosanoic acid methyl ester (10). The presence of these bioactive triterpenoids and fatty acids could offer an explanation for the ethno-medicinal uses of this plant. Further work is on-going to isolate in pure form, and characterized the bioactive constituents in the XAM with the view of discovery lead compounds for the treatment of tuberculosis and associated opportunistic bacterial infections.
Downloads
References
Adams RP. (1989). Identification of essential oils by ion mass spectroscopy. New York;. Academy Press, Inc, 302pp.
Akihisa T, Franzblau SG, Ukiya M, Okuda H, Zhang F, Yasukawa K, Suzuki T, Kimura Y. (2005). Antitubercular activity of Triterpenoids from Asteraceae flowers. Biological and Pharmaceutical Bulletin; 28(1):158-160
Braga, R. (1960). Plantas do Nordeste, Especialmente do Ceará. Natal, Ed. Universitária.
Cantrell CL, Franzblau SG, Fischer NH. (2001). Antimycobacterial plant Triterpenoids. Plantamedica; 67(8): 685-694.
Cater NB, Denke MA. (2001). Behenic acid is a cholesterol-raising saturated fatty acid in humans. Am J Clin Nutr: 73:41–4.
Da Silva, KM, Chaves, TP, Santos, RL, Brandão, DO, Fernandes, FHA, Ramos-Junior, FJL, Dos Santos, VL, Felismino, DC, Medeiros, ACD. (2015). Modulation of the erythromycin resistance in Staphylococcus aureusby ethanolic extracts of XimeniaamericanaL and Schinopsisbrasiliensis Engl. BLACPMA; 14:92-98.
Fatope, MO, Adoum, OA, Takeda, Y. (2000). C18 Acetylenic Fatty Acids of Ximeniaamericana with Potential Pesticidal Activity. J Agric Food Chem; 48:1872-1874.
Geyid, A, Abebe, D, Debella, A, Makonnen, Z, Aberra, F, Teka, F, Kebede, T, Urga, K, Yersaw, K, Biza, T, Mariam, BH, Guta, M. (2005). Screening of some medicinal plants of Ethiopia for their anti-microbial properties and chemical profiles. J Ethnopharmacol; 97:421–427.
Harborne JB. (1998). Phytochemical methods- A guide to modern techniques of plant analysis 3rdedn.Chapman and Hall, .London, 302pp.
Heggen, E.; Granlund, L.; Pedersen, J.I.; Holme, I.; Ceglarek, U.; Thiery, J.; Kirkhus, B.; Tonstad, S. (2010). "Plant sterols from rapeseed and tall oils: Effects on lipids, fat-soluble vitamins and plant sterol concentrations". Nutrition, Metabolism and Cardiovascular Diseases. 20 (4): 258–65.
Higuchi CT, Pavan FR, Leite CQF, Sannoniya M, Vilegas W, Leite SRd-A, Sacramento LVS, Sato DN. (2008). Triterpenes and antitubercular activity of Byrsonimacrassa. Quim Nova; 31(7):179-1721
Houghton PJ, Raman A. (1999). Laboratory handbook for the fractionation of natural extracts. Chapman and Hall, London. P 155-187.
James, DB, Owolabi, AO, Ibiyeye, H, Magaji, J, Ikugiyi, YA. (2008). Assessment of the hepatic effects, hematological effect and some phytochemical constituents of Ximeniaamericana (Leaves, stem and root) extracts. Afr J Biotechnol; 7:4274-4278.
Jensen KA. (1955). Towards a Standardisation of Laboratory Methods. Second Report of the Sub-Committee of Laboratory Methods of the International Union against Tuberculosis. Bull Int Union Tuberc; 25(1-2): 89–104.
Kawo, AH, Suleiman, ZA, Yusha'u, M. (2011). Studies on the antibacterial activity and chemical constituents of Khayasenegalensis and Ximeniaamericana leaf extracts. Afr J Microbiol Res; 5:4562-4568.
Koné, WM, Atindehou, KK, Terreaux, C, Hostettmann, K, Traoré, D, Dosso, M. (2004). Traditional medicine in North Côte-d’Ivoire: screening of 50 medicinal plants for antibacterial activity. J Ethnopharmacol; 93:43–49.
Le, NHT, Malterud, KE, Diallo, D, Paulsen, BS, Nergård, CS, Wangensteen, H. (2012). Bioactive polyphenols in Ximeniaamericana and the traditional use among Malian healers. J Ethnopharmacol; 139:858-862.
Maikai, VA, Kobo, PI, Maikai, BV. (2010). Antioxidant properties of Ximeniaamericana. Afr J Biotechnol; 9: 7744-7746.
Mann A, Ibrahim K, Oyewole AO, Amupitan JO, Fatope MO, Okogun JI. (2011). Antimycobacterial Friedelane-terpenoid from the Root Bark of Terminalia Avicennioides. American Journal of Chemistry 1(2): 52-55
Mevy, JP, Bessiere, JM, Greff, S, Zombre, G, Viano, J. (2006). Composition of the volatile oil from the leaves of Ximeniaamericana L. Biochem Syst Ecol; 34:549-553.
Okorie O, Okonkwo TJN, Nwachukwu N, Okeke I. (2010). Potentials of Detariummicrocarpum (Guill and Sperr) seed oil as a matrix for the formulation of Haloperidol injection. Int. J. Pharm. Sci. Rev & Res.; 5(1):1-4
Omer, MEFA, Elnima, EI. (2003). Antimocrobial Activity of Ximeniaamericana. Fitoterapia; 74:122-126.
Pott, A, Pott, VJ. (1994). Plantas do Pantanal; Empresa Brasileira de Pesquisa Agropecuária, Centro de Pesquisa Agropecuária do Pantanal, Corumbá – MatoGrosso, Brazil
Rudkowska I, Abu Mweis SS, Nicolle C, Jones PJ. (2008). "Cholesterol-lowering efficacy of plant sterols in low-fat yogurt consumed as a snack or with a meal". J Am Coll Nutr. 27 (5): 588–95.
Soro TY, Traore, F, Datte, JY, Nene-Bi, AS. (2009). Antipyretic activity of aqueous extract from Ximeniaamericana. Phytotherapie; 7:297-303.
Stein, SE. (2011). NIST/EPA/NIH Mass Spectral Database NIST 11) and NIST Mass Spectral Search Program Version 2.0g). National Institute of Standards and Technology; Gaithersburg
Swigar AA, Silverstein RM. Monoterpènes. (1981). Infra-red, Mass, NMR Spectra and Kovats Indices, Aldrich Chem. Co. Milwaukee, WI, USA. In: Chemical composition, antioxidant and anticholinesterase activities of the essential oil of Salvia chrysophylla Staph. Duru ME, Tel G, Ozturk M, Harmandar M (eds). Rec. Nat. Prod. 2012; 6(2): 176.
Uchôa VT, Sousa CMM, Carvalho AA, Sant’Ana AEG, Chaves MH. (2016). Free radical scavenging ability of Ximeniaamericana L. stem bark and leaf extracts. J App Pharm Sci; 6 (02): 091-096.
Voss, C, Eyol, E, Frank, M, Von Der Lieth, CW, Berger, MR. (2006). Identification and characterization of riproximin, a new type II ribosome-inactivating protein with antineoplastic activity from Ximeniaamericana, J FASEB; 20:334-345.
Yang Z-H, Miyahara H, Hatanaka A. (2011). Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes. Lipids in Health and Disease: 10:120
-- 0 --