Species-Level Differentiation of Microbes within Multispecies Microscopic Polyculture via Complex Deep Learning Strategies

Authors

  • Charlotte Roberts Junior Research Fellow, Australian Graduate School of Engineering (AGSE), UNSW, Sydney, Australia
  • Rajani Pydipalli Statistical Programmer, Gilead Sciences Inc., Foster City, California, USA
  • Prasanna Pasam Developer IV Specialized, Fannie Mae. 2000 Opportunity Wy, Reston, VA, USA
  • Sunil Kumar Reddy Anumandla System Analyst, Texas Municipal League Intergovernmental Risk Pool (TMLIRP), Texas, Austin, USA

Keywords:

Species-Level Differentiation, Microbes, Multispecies Polyculture, Microscopic Analysis, Deep Learning, Microbial Community, Artificial Intelligence

Abstract

The study aims to investigate the differentiation of microbes at the species level within multispecies microscopic polycultures using advanced deep-learning techniques. Utilizing advanced deep learning models such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), this approach focuses on training with extensive datasets of microscopic images to improve the accuracy of microbial identification, spatial mapping, and analysis of temporal dynamics. Fundamental discoveries encompass enhanced precision in microbial identification, unraveling microbial communities' spatial and temporal dynamics, and creating models to forecast microbial responses. Emphasizing the importance of ongoing investment in computational infrastructure, data-sharing initiatives, and interdisciplinary collaboration is crucial for responsibly advancing microbial community analysis. This study emphasizes the significant impact that deep learning technologies can have on understanding microbial ecosystems, solving environmental issues, and driving innovation in biotechnology and medical research.

Downloads

Download data is not yet available.

References

Achtman, M., Wagner, M. (2008). Microbial Diversity and the Genetic Nature of Microbial Species. Nature Reviews. Microbiology, 6(6), 431-40. https://doi.org/10.1038/nrmicro1872

Anumandla, S. K. R., & Tejani, J. G. (2023). Robotic Automation in Rubber Processing: Improving Safety and Productivity. Asian Journal of Applied Science and Engineering, 12(1), 7–15. https://doi.org/10.18034/ajase.v12i1.90

Duckney, P., Wong, H. K., Serrano, J., Yaradou, D., Oddos, T. (2013). The Role of the Skin Barrier in Modulating the Effects of Common Skin Microbial Species on the Inflammation, Differentiation and Proliferation Status of Epidermal Keratinocytes. BMC Research Notes, 6, 474. https://doi.org/10.1186/1756-0500-6-474

Gomila, M., Prince-Manzano, C., Svensson-Stadler, L., Busquets, A., Erhard, M. (2014). Genotypic and Phenotypic Applications for the Differentiation and Species-Level Identification of Achromobacter for Clinical Diagnoses. PLoS One, 9(12), e114356. https://doi.org/10.1371/journal.pone.0114356

Guden, R. M., Vafeiadou, A-M., Meester, N. D., Derycke, S., Moens, T. (2018). Living Apart-together: Microhabitat Differentiation of Cryptic Nematode Species in a Saltmarsh Habitat. PLoS One, 13(9), e0204750. https://doi.org/10.1371/journal.pone.0204750

Gunina, A., Smith, A. R., Godbold, D. L., Jones, D. L., Kuzyakov, Y. (2017). Response of Soil Microbial Community to Afforestation with Pure and Mixed Species. Plant and Soil, 412(1-2), 357-368. https://doi.org/10.1007/s11104-016-3073-0

Huang, C-h., Lee, F-l. (2010). Differentiation of Sourdough Yeast Species by A Novel Species-specific PCR Assay. World Journal of Microbiology and Biotechnology, 26(6), 1087-1092. https://doi.org/10.1007/s11274-009-0274-1

Kothapalli, K. R. V., Tejani, J. G., Rajani Pydipalli, R. (2021). Artificial Intelligence for Microbial Rubber Modification: Bridging IT and Biotechnology. Journal of Fareast International University, 4(1), 7-16.

Lange, M., Habekost, M., Eisenhauer, N., Roscher, C., Bessler, H. (2014). Biotic and Abiotic Properties Mediating Plant Diversity Effects on Soil Microbial Communities in an Experimental Grassland. PLoS One, 9(5), e96182. https://doi.org/10.1371/journal.pone.0096182

Michelon, W., Da Silva, M. L., Busi., Mezzari, M. P., Pirolli, M., Prandini, J. M. (2016). Effects of Nitrogen and Phosphorus on Biochemical Composition of Microalgae Polyculture Harvested from Phycoremediation of Piggery Wastewater Digestate. Applied Biochemistry and Biotechnology, 178(7), 1407-1419. https://doi.org/10.1007/s12010-015-1955-x

Mohammed, M. A., Mohammed, R., Pasam, P., & Addimulam, S. (2018). Robot-Assisted Quality Control in the United States Rubber Industry: Challenges and Opportunities. ABC Journal of Advanced Research, 7(2), 151-162. https://doi.org/10.18034/abcjar.v7i2.755

Morrow, J. L., Frommer, M., Shearman, D. C. A., Riegler, M. (2015). The Microbiome of Field-Caught and Laboratory-Adapted Australian Tephritid Fruit Fly Species with Different Host Plant Use and Specialisation. Microbial Ecology, 70(2), 498-508. https://doi.org/10.1007/s00248-015-0571-1

Morton, J. T., Sanders, J., Quinn, R. A., McDonald, D., Gonzalez, A. (2017). Balance Trees Reveal Microbial Niche Differentiation. Msystems, 2(1). https://doi.org/10.1128/mSystems.00162-16

Pydipalli, R., & Tejani, J. G. (2019). A Comparative Study of Rubber Polymerization Methods: Vulcanization vs. Thermoplastic Processing. Technology & Management Review, 4, 36-48. https://upright.pub/index.php/tmr/article/view/132

Roberts, C., Pydipalli, R., Tejani, J. G., & Nizamuddin, M. (2021). Green Chemistry Approaches to Vulcanization: Reducing Environmental Impact in Rubber Manufacturing. Asia Pacific Journal of Energy and Environment, 8(2), 67-76. https://doi.org/10.18034/apjee.v8i2.750

Rodriguez, M., Tejani, J. G., Pydipalli, R., & Patel, B. (2018). Bioinformatics Algorithms for Molecular Docking: IT and Chemistry Synergy. Asia Pacific Journal of Energy and Environment, 5(2), 113-122. https://doi.org/10.18034/apjee.v5i2.742

Sandu, A. K., Pydipalli, R., Tejani, J. G., Maddula, S. S., & Rodriguez, M. (2022). Cloud-Based Genomic Data Analysis: IT-enabled Solutions for Biotechnology Advancements. Engineering International, 10(2), 103–116. https://doi.org/10.18034/ei.v10i2.712

Sassenhagen, I., Gao, Y., Lozano-Duque, Y., Parsons, M. L., Smith, T. B. (2018). Comparison of Spatial and Temporal Genetic Differentiation in a Harmful Dinoflagellate Species Emphasizes Impact of Local Processes. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2018.00393

Suryanti, I. A. P., Widiyanti, N. L. P. M., Tangguda, S., Tridewi, I. A. K. (2018). Identification of Microscopic Fungus in Gill of Skipjact Tuna (Katsuwonus pelamis L.) at Traditional Markets in Singaraja – Bali. Journal of Physics: Conference Series, 1040(1). https://doi.org/10.1088/1742-6596/1040/1/012002

Tejani, J. G. (2017). Thermoplastic Elastomers: Emerging Trends and Applications in Rubber Manufacturing. Global Disclosure of Economics and Business, 6(2), 133-144. https://doi.org/10.18034/gdeb.v6i2.737

Tejani, J. G. (2019). Innovative Approaches to Recycling Rubber Waste in the United States. ABC Research Alert, 7(3), 181–192. https://doi.org/10.18034/ra.v7i3.660

Tejani, J. G. (2020). Advancements in Sustainable Rubber Production: Bio-Based Alternatives and Recycling Technologies. ABC Journal of Advanced Research, 9(2), 141-152. https://doi.org/10.18034/abcjar.v9i2.749

Tejani, J. G. (2023). The Influence of Crosslinking Agents on the Properties of Thermoplastic Elastomers. Silicon Valley Tech Review, 2(1), 1-12.

Tejani, J. G. (2024). Robotics and Automation in Rubber Vulcanization Processes. Robotics Xplore: USA Automation Digest, 1(1), 44-60.

Tejani, J. G., Khair, M. A., & Koehler, S. (2021). Emerging Trends in Rubber Additives for Enhanced Performance and Sustainability. Digitalization & Sustainability Review, 1(1), 57-70. https://upright.pub/index.php/dsr/article/view/130

Tejani, J., Shah, R., Vaghela, H., Kukadiya, T., Pathan, A. A. (2018). Conditional Optimization of Displacement Synthesis for Pioneered ZnS Nanostructures. Journal of Nanotechnology & Advanced Materials, 6(1), 1-7. https://www.naturalspublishing.com/Article.asp?ArtcID=13193

Vennapusa, S. C. R., Pydipalli, R., Anumandla, S. K. R., Pasam, P. (2022). Innovative Chemistry in Rubber Recycling: Transforming Waste into High-Value Products. Digitalization & Sustainability Review, 2(1), 30-42.

Vennapusa, S. C. R., Tejani, J. G., Mohammed, M. A., Yarlagadda, V. K. (2024). Automated Robotics Solutions for Precision Molding in Rubber Manufacturing. NEXG AI Review of America, 5(1), 1-18.

Ying, D., Pasam, P., Addimulam, S., & Natakam, V. M. (2022). The Role of Polymer Blends in Enhancing the Properties of Recycled Rubber. ABC Journal of Advanced Research, 11(2), 115-126. https://doi.org/10.18034/abcjar.v11i2.757

Downloads

Published

2024-06-30

Issue

Section

Peer-reviewed Article

How to Cite

Roberts, C., Pydipalli, R., Pasam, P., & Anumandla, S. K. R. (2024). Species-Level Differentiation of Microbes within Multispecies Microscopic Polyculture via Complex Deep Learning Strategies. Malaysian Journal of Medical and Biological Research, 11(1), 7-20. https://mjmbr.codexcafe.net/index.php/mjmbr/article/view/688

Most read articles by the same author(s)